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Abstract

A decision theoretic approach is followed in selecting the best of k Pareto

populations taking into account the cost of sampling and penalties for wrong

decisions. Minimax sample sizes are determined under various types of penalty

* functions.

AMS 1980 subject classification: primary: 62F07, secondary: 62C20.

Key words and phrases. Pareto distribution, cost of sampling, penalty function,
minimax criterion, selection problem.
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1. Introduction

", The main ideas in selecting the best populations meeting some prescribed

optimality criterion have been mooted originally by Bechchofer (1954) and

Gupta (1956) and the subject has gone from strength to strength by several F

contributions by several statisticians over the last three decades. In this

paper, the selection problem is tackled from a decision theoretic point of view.

In selecting the best population, we take into account the cost of sampling

and the penalties for taking a wrong decision. This kind of approach has

been promulgated by Somerville (1954) and Ofosu (1972).-We are basically

interested in selecting the best Pareto population following the lead given

by Somerville (1954) and Ofosu (1972)'. The Pareto probability model has been

found useful in a wide variety of contexts. Pareto (1927) proposed this model

to study the distribution of incomes in various societies for comparison. In
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medical circles, this has been used as a model for the remission rate of W,

discharged psyciatric patients (See Fox and Kraemer (1971).)as a survival

model for cardiac patients waiting for a heart transplant operation.(See

Wingo (1979).). In the context of economics and marketing, this has been

used as a model for the distribution of property values, business mortality,

migration of workers, size of cities and firms, and consumer prices. See

Steindl (1965) and Koutrouvelis (1981). Ofosu (1972) has worked out minimax

sample sizes under a certain penalty function in the selection of the best

Gamma population. We feel that there is a gap in one of the steps involved

in the derivation of minimax sample sizes. In this paper, we consider four

different types of penalty functions including

the one considered by Ofosu (1972) . Under three of these penalty functions,

we derive the minimax sample sizes. The maximum of the resultant loss functions "-

is explicitly derived overcoming the difficulty faced by Ofosu (1972). We

will elaborate on this at the appropriate juncture.

2. General formulation

In this section, we present general ideas in selecting the best

poulation from a decision theoretic point of view. In the next section,

we specialize in the Pareto distribution. U'

There are k populations TI' w2 , " k under study. Let

Xi denote an observation selected at random from the i-th population Wi9

1,2,""-,k. The probability law governing the generation of Xi s is

described by a probability density function f(-;e i) which depends on an
'I[
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unknown parameter i' i - 1,2,...,k. We assume that the functional form of

f is completely specified and it is the same for all the populations. The

only unknown quantity that enters the density function is 8. and the set

of all possible configurations (el.e2,...,ek) is denoted by e . We declare

a population to be the best if its a-value is the largest. If two or more

-values are equal and largest, we adopt a well defined convention in

declaring one of the corresponding populations to be the best. One such L

commonly adopted convention is the following. If e. and ej are equal

and the largest, the population r. is declared to be the best if j > i.

Conventions are needed only in the calculation of probabilities of certain

events in the selection problem. In reality, if 8i  and e. are equal and

the largest, we could regard both the populations ri and ij to be the3i
best.

One could also define 'the best population' to be the one

whose e-value is the least. The treatment of the selection problem within
the purview of this definition is analogous to the one we are going to

develop for the above definition.

A selection problem basically consists of two components.

i) Draw a random sample of size n4  from population i'i, i = 1,2,.-.,k.

(ii) Develop a statistical procedure R built on n1 + n2 + ... + nk

observations which, once the data are given, clearly, declares the best L

population.

Introducing a good statistical procedure R to select the best

population is not a difficult job for many probability models. The following -

.'...

. . .. . . . . .. ... ..,°. . . . .. . . . . . . . . . . . . . .-.. ".
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is a natural procedure. Let YI. Y2 9 "'" , Yn be n independent identically

distributed random variables with common probability der ity function f(-;B),

e unknown. Choose, if possible, a minimum variance unbiased estimator of e

based on Y1 . Y2 9 "'" ' Yk" If minimum variance unbiased estimator of e

does not exist, choose some decent estimator of e based on Y1 9 Y2 " Yk "

which has good asymptotic properties. Let us denote the chosen estimator by

T(Y1,Y 2 ,Yk). (In the Pareto case we are going to discuss, a natural

estimator of e presents itself.)

Statistical Procedure R

Suppose the data from the k populations are arranged as follows.

Population 71 72 .... k

X12 X22 .. Xk2 ,_

Data

X X Dta Xkn
i 1  2n2  k

Let Tj = T(X jXj2, Xj ), j = 1,2,.--,k.

nj..

Population wi is the best if Ti > T. for every j i.

For simplicity, here, we assume that each Ti has a continuous probability

density function. If two or more Ti values are equal and the largest, the

population with largest suffix i is declared to be the best (our convention).

Of course, this event occurs with probability zero.

.-r .
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The heart of the matter in selection problems is the choice of IF

the sample sizes nI, n2, ... , nk. We need to introduce an optimality

V, criterion so that the sample sizes chosen are optimal according to the

criterion proposed. To simplify the problem, we decide in advance that we

intend to select samples of the same size form each population. Let

nI = n ... nk = n.

Following Somerville (1954) and Ofosu (1972), we proceed as

follows. We adopt the statistical procedure R described above to select

the best population. No statistical procedure is infallible. It might

declare a wrong population to be the best. Let e1, e2, .. , k

be a configuration of the populations Tr1' 2 . I respectively.

Let e(1 ) (2) < " < (k) be the arrangement of el, e2, ... , ek

in increasing order of magnitude. Let be the population whose parameter

value is e(j) , j = 1,2,...,k. If two or more e-values coincide, by the

convention mentioned earlier, the corresponding i, s are taken to be in

increasing order of magnitude. i1  i2, ik is merely a permutation

of 1,2,...,k which depends on the configuration (ele 2,...ek) in e.

L Let the statistic T. = T(X il,Xi 2 ,...,Xi ) correspond to the population

ri., j = 1,2,...,k. According to the configuration (ele 2,...,k) in o,

i is the best population. Under the given configuration (ele 2,-..,8k) in
k ..

', the statistical procedure R can commit k-i different types of wrong

decisions. The list is given below.

Wrong decision Type j : i is declared to be the best.

• .. (j = 1,2,...,k-l) :"

Correct decision : . is declared to be the best.
LT k_."'."_k

rI
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In order to calculate the probabilities of the above events, we

assume that the probability density function of the statistic T=

T(YisY2  **Yn), where Y1, Y 2Y are independent identically

distributed random variables with common probability density function

f(.;e), is of the continuous type. Under this assumption, the random

variables T1, T,*. Tk are distinct with probability one under every

gconfiguration (else 2 9"..ek ) in 0. Let g(.;e;n) be the probability

density function of T =T(YlY 2,..Y) and G(.;e;n) its distribution

function. Let

assue k that th roail= Prob(R takes a wrong decision of Type j)

= Pr (T > T. fore er every

k
I n12.,k  G(x;e ;n) g(x;e . ;n) dx,

r~j

jo =

and

Pk(el,e 2,...,ek;n) = Prob(R takes the correct decision )

= Pre1 (T. > T. for r r 1,2,---,k-1)
e'k2"" k j 1r 

.-. r

k-i
f I1 G(x;e ;n) g(x;e k);n) dx
-- r=l (r)

Cost of sampling

The cost of selecting a random sample of size n from each population

has to be taken into account in the determination of an optimal sample size n.

We assume that the cost function to be of the form
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C(n) = co + kclnd, n 1,2, ... F

where c0 , c1  and d are nonnegative constants. c0  and cI  are measured

in the same units, and c0  represents fixed administrative costs involved

in setting up a sampling plan. If d = 1, the cost of taking additional

samples rises linearly with n. If d < 1, the rise in the cost does not

increase relatively with increasing sample sizes. If d >1, it will

become more and more expensive to take additional samples. |

Penalty for wrong decisions

Let Wj(°O,.2, ' k)  denote penalty for taking a wrong decision

of Type j which is measured in the same units as those of co  and c1  for

j = 1,2,...,k-1 and for every configuration (e1, 8
2 ,...,k) in e .(In the

next section, we discuss several choices of penalty functions.)

Loss function

For each configuration ( ,6 , k) in a and for each

sample size n > 1, we assume that the loss function L to have the

following structure.

L(e l e2 ' .,k;n) = Cost of sampling + Average penalty for wrong

decisions

k-i
= C(n) + (Penalty for wrong decision of Type j)x

j =1 3F
Pr(R commits wrong decision of Type j)

k-i
C(n) + Wj(01,6 . k j e ;2,...,;n). ..j = l 1 ' 2 1 '1 ...9 ks *?

Decision theoretic formulation

We now identify the state space to be ® and the action space to

..-. "...
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be N = {1,2,3, *.. } , the set of all possible sample sizes, and the loss V

function L is the one described above. It is defined on the cartesian product

space 0 x N. The minimax sample size n minimizes

max L(N;m)

ese
over all m in N. In the next section, we specialize the case of Pareto

distribution.

3. On selecting the best Pareto population

The probability density function of a Pareto distribution is given by L

f(x;e;m) = m/xe+, m < x <

where m > 0 and e > 0 are the parameters of the model. We recall some

distribution theory concerning this model. For details, see Johnson and Kotz

(1970). Let XIX 2 ,.--,Xn be independent identically distributed random

variables with common probability density function f given above. Let

m = min X
1<i<n 1

and

n 1/n -1=-= 6 (log(( T1 xi //m)) "1 ""

Then m and e are jointly sufficient for m and e. Further,

2ne/e 4X2n'

2where X2n chi-square distribution with 2n degrees of freedom.

The problem to which we address ourselves in this section is the

following. The j-th population ij has Pareto distribution with parameters
3 .

r
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m. and e, both unknown, j : 1,2,-.-,k. We want to select that population

Trj for which e. is the largest. As expostulated earlier, we have to

strike at a decent estimator T of e based on n independent observations
5'

from a Pareto distribution with parameters m and e in order to describe

the statistical procedure R in the selection of the best population. From

the deliberations carried out above, a clear choice emerges. Let

( i)11/n.

T(X1,X2,...,X) = = og lminlXi/ 1 (3.1)
l~i~n

The parameter space 0 in this case identifies as the positive orthant of

the k-dimensional euclidean space, i.e.,

e = {(ale 2 ,-.-,ek) ; e > 0 for all i}

Statistical Procedure R

Let XjlXj2 ,...,Xjn be a random sample of size n from

population ,i, j = 1,2,.-.,k.

Declare population (i = 1,2,---,k) to be the best if

T(X ilx i2,'",in = Ti > T. ,

for all j # i,

where the statistic T is given by the formula (3.1).

r
The error probabilities in this case work out as follows.

°°-.i.-. k (8 (r) g n x

p j 6,e 2 ' ..,ek;n) : ; i (1 G 2 - x)) 92n(x) dx, (3.2)
0 r=1 n(j)

rj

j-~

. . .*.,. . .* ** .. . *. ." . . ' .* -
°



for j = ,,.,-, where is the probability density

function of a chi-square distribution with 2n degrees of freedom and

G2n( ) its distribution function.

The probability that R takes the correct decision is given by

Cok-1
p~ee,..,en) f I ( - (~~LLx)) g (x) dx (3.3)

k i~ k 0 r=l 2n (k) 2

At this juncture, we state some inequalities concerning the

above probability for future use.

Lemma 3.1 For every (else 2 . ek in 0

k-i
Pk(el1e,0 e;n) > G (1WGnX) g W(x dx,.-

and equality holds in the above if 6 = ** 2 e k

Proof. Obvious.

Lemma 3.2 Let (01182 9...'e k) £0 .Write e(k) =re(k-l). (Obviously, r > 1.)

Then

Pk et2,"Iek@;n) > fr (I G G~(x/r)) k- 2 (x) dx,

and equality in the above holds if e 6 * 6 8ki and e =o -*

Proof. Easy to check.

Now, the loss function L takes the following form. For

6)in o and n > 1,
k-io kk r ~.-!

U616 2*** 6 ;n C~n) + z IW j(e196e2 '*...)k) f TI (1- Gn( - x)) g Cx)
j~~i 0 r=l 2n (j) 2

r~j

.~~ 
i



In order to find the minimax sample size, we need to maximize

the above loss function over 0 for every fixed n > 1. We consider four

different types of penalty functions Wj's and examine the behaviour of

the loss function under each one of these penalty functions.

Penalty function of Type 1 Constant penalty.

Let Wj(ele 2 ,.--,ek) = c, a constant for every (ele 2 ,.--,ek)

in 0 and j = 1,2,--.,k-1. (For simplicity, take c = 1.) What, this

means is that whatever may be the type of wrong decision, the same amount

of penalty is imposed. In this case, the loss function L simplifies to

k-1
L(l, , ;n) = C(n) + z p (,e 2,. -,ek;n)2 k j 2=1

= C(n) + 1 -Pkl29-...k

for every (else 2,...ek) in G and n > 1. The maximization of L

over e can easily be worked out for every fixed n > 1. For this, let

us introduce the following subset of 9.

o = {(,e = 2 =....k} -"a
k ~ 1 2 k

Proposition 3.3 For every n > 1,

max L(';n) = max L(N';n) = (k-l)/k.

ee ece0

Proof. First, we note that if (el,e 2,...,ek) o  then TI , T2, ... , Tk

are independently identically distributed. Consequently, p(,e 2 , n)

= 1/k for every j = 1,2,-..,k. Therefore,

r-
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k-i
ma PJe e.*;n) =(maxO)/k
j = jPk1

eWee

- n n- (eG;n()) -

G k- 2 (x) dx.

by Lemmna 3.1,

- 1-Pk (ei I.el,,eIn)

-1- (1/k) = (-)k

This completes the proof.

As a consequence of the above proposition, we have the

following results.

Theorem 3.4 For every fixed n > 1,

max L(e;n) = C(n) + (k-1)/k.

Corollary 3.5 Under the Penalty function-of Type 1, the minimax sample

size is n =1.

Penalty function of Type 2 Penalty function which takes into account

differences between the best and the second

best populations.
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It is natural to impose penalties for wrong decisions based
on the magnitude of the parameters involved. A critical point in the

selection problem is the times at which the second best population

passes as the best population. If (else2 ,...,ek) in o is a configuration I
2 k"

of the parameters of the k populations, the penalty for declaring

the second best population as the best population should naturally

depend on O(k-l and e(k). Some natural penalty functions are _

c2 e(k) or c log e(k)
k-l(el2,'", k  2 '(k(1 )  k-i)

where c2 > 0 is measured in the same units as those of c0  and cI.'

There are other types of wrong decisions too. We could insist that

the penalty for other types of wrong decisions should be atleast

Wk-l (else 2,.-. ,ek. Let

Wj(els= dj Wk (el,e2,.-.,k),
dI** k 2  dk 2  -k.-

for j = 1,2,.--,k-2, where d1, d29 ... , d-2  are constants exceeding

unity. It is natural to take dl > d2 >... > dk 2  embodying the

principle that the more extreme the type of wrong decision the more

severe the penalty is. In what follows, we take
e(k)

Wkl(else , 9= c2 log (k-i)

The loss function then becomes

k-i e~k )  It6
L(ele 2,-.-,ek;n) = C(n) + z c2 d.(log ' pj(ele 2 ,-.k;n)j~l e(k-i) I ."

for all (el,e 2 ,...,ek) in e and n > 1, where dk. = 1.
2 k k-l
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Our next objective is to maximize the loss function L over 0

for every fixed n > 1. We were unable to maximize the loss function explicitly

in its full generality stated above. The following results give explicitly

the maximum of this loss function over e in the case d1 = d2 = = dk 2.

Before stating the relevant results,

we introduce the following subset of e.

I  = {(else,*.,ek k) c e) =;2 . k-1 and ek = k-1

for some r > 1-

Lemma 3.6 For every fixed n> 1, let

k-i (k
p max Z (log p.(el' 2 "... ek;n)

j=1 '(k-1) 3

where the maximum is taken over all (el,e2 ,...,ek) in e,

and
k-i1 6

q = max z (log ) (e ,*,.--,*;n), ,.--..1' 2
j=1 _(kI)

where the maximum is taken over all (e(,e ,---,e() in SI.

Then

k-2
p rq max (log r) (k-i) 1 (1- G2 n(x)) k ' (1- G2n(xr)) g2n(x) dx

r>l1 0

max (log r)(I (I G2n(x/r)) k-1 (x) dx).
r>l 0

Proof. Since e , q < p. We now prove p < q. For this, it suffices
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to show the following. Given (else2,..-,ek) in 0, there exists IF

in I  such that

k-1 e ()k-1 etk)  P
(log (k) pj(el e2 ,...,ek;n) < k (log -i_1*.**.-.,B*;n)

j=l e(k-1) (j=l k-.) 12 k

Let e = = . . = 0 (k-l) and 0 = 0 (k) . Obviously, 0* re*

for some r > 1 and (-, ,...,e ) o e1. Therefore,

k-i(k).
z (log p.( S

j=l (k-1) jie 2 ""'ek;n)

k-I
z (log r) pj(,0 2 ,..-,ek;n)

j=l .3..

= (log r) (1 - pk(el2,-'-,k;n))

kil(log r) (1 f (1 - G (x/r))k' g2 W(X) dx), by Lemma 3.2
2n 2

(log r) (1 - pk(*ee ,-,;n))

k-i
(log r) . pj(e p e,...,ek;n)

j=1

k-i e*k
z (log ) p.(e,e* .,e*;n)

This proves that p < q and hence p = q. Incidentally, if = * .

e*_ and e= re*- for some r > 1, then for every j =1,2,--,k-1,

we have

* ~ ~ c k (-G(P
j(011,. ;n) (- G2n x)) g2n(x) dx1 2 k0 p=l 2n 0 j) 2

p#j

= (1 G2n(x))k'2 (1 G2n(xr)) g2n(X) dx.
0

.,-

--- r . * 4 4 . . . .. . . . . . . . . . . . . . . . . . . . . . .
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Consequently,
k-I

max Z (log .- ) .--.
max k-i1~ e.~...~n

where the maximum is taken over all (e* * -.. ,e ) in e1

max (log r) (k-I) 1 (1 G2n(X))k 2 (1 - G2n (xr)) g2n(x) dx
r>1 0 " 2n

-.

- max (log r) (1 - Pk(e,e,...,e,re;n))
r> 1

- max (log r) (1- f (1- G 2n(x/r)) g2n(x) dx).
r>1 0

This completes the proof.

As a consequence of this lemma, we obtain the following result.

Theorem 3.7 For every n > 1,

max L(e;n)= max L(W;n)

= C(n) + c2 max (log r)(k-1) ;0 (1 - G2 'x))k2(l - G2 (xr)) g2n(x) dx .'. .-. .

r>1 0

S rk-

C(n) + c2 max (log r) (1 1 (1 G2n(x/r)) 2 (x) dx).
r>1 0

Theorem 3.7 reduces the problem of maximizing L over 0 to the

problem if maximizing the following "unction

k-i
f(r) = (log r) (1- f (1- G2n(x/r)) g2nkX) dx)

0

over all r > 1. In view of Theorem 3.7, we modify the notation of the loss

r

. . . . . . . .. . . . . . . . . . . . . .. :-
. . -. ..
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function from L(le 2 .. ek ;n) to IF
2, k

L(r;n) = C(n) + c2 f(r),

r> 1 and n > 1.

There are two stages involved in finding the minimax sample size.

Stage 1. For every fixed n > 1, maximize L(r;n) over all r > 1. This

is equivalent to maximizing f(r) over all r > 1. Let rflk

be the value at which f(r) is maximum.

Stage 2 Then find the minimum of L(rnk;n) over all n > 1. The value of

n at which L(rn,k;n) is minimum is the required minimax sample

size.

Maximization of f(r) over all r > 1 is not easy analytically.

We observe that f(.) has the following properties. (i) f(1) = 0 (obvious).

(ii) lim f(r) = 0. In order to understand the function f(.), we used a

numerical quadrature formula to evaluate f(r) for an extensive range of

values of r and k. A sample of these findings is reproduced below.

Table 1 Tabulation of values of rnk. the value at which f(.) is maximum

Sample No. of populations, k
size "'__"

n 2 3 4 5

2 2.3 2.5 2.8 2.9

3 1.9 2.1 2.2 2.3

4 1.7 1.9 2.0 2.0

5 1.6 1.7 1.8 1.9

6 1.6 1.7 1.7 1.8

7 1.5 1.6 1.6 1.7

8 1.5 1.5 1.6 1.6 -.

9 1.4 1.5 1.5 1.6

10 1.4 1.5 1.5 1.5 F
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The following information emerges from these studies. (iii) For

every fixed n and k, f(.) seems to be unimodal. (iv) For every fixed k,

rn, k decreases with increasing n, i.e., rm, k _< rn, k  if m > n. (This

property useful when determining minimax sample sizes.)

Ofosu (1972), in his study of selecting the best of k Gamma

populations, suggested two methods of determining minimax sample sizes.

Method 1 Choose a certain range of plausible values of sample size in which

we hope the minimax sample size lies. Find rn,k for every n

in the range selected. Evaluate L(rn,k;n) for every n in the

range. Then that value of n for which L(rnk;n) is minimum

is the desired minimax sample size.

This method involved a lot of computer time. Determination of

plausible minimax values of n involves an extensive tabulation of L(r;n)'s.

Further, locating r s is a time consuming process. The second method
n,k

we are going to describe now is a slight modification of another method

suggested by Ofosu (1972). This method uses the property (iv) mentioned above.

Method 2 k is fixed. Find r,,. the point at which f(-) is maximum

when the sample size is 2. Evaluate L(r;n) for r = 1.0, 1.1 1.2,

r2 ,k and n = 2,3,4, -.. ,20. These values are tabulated

in the two-way grid, with rows corresponding to r and columns

corresponding to n. For each column in the two-way grid, locate

the maximum. Under each column representing a particular sample

size n, we know that the maximum of L(r;n) occurs at some value

of r between 1.0 and rk. See property (iv) above. These

maxima exhibit a decreasing trend to start with and then rise

steadily. We locate the column for which the maximum entry is
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minimum. The corresponding sample size is taken to be the minimax iF-

sample size. If these column maximums exhibit a downward trend over

the entire sample range from 2 to 20 considered, then the

minimax sample size is > 20. In this case, we need to extend the

range of values of n. We may need to use asymptotic expressions

for f(.) for large values of n. This aspect is discussed in the

last section.

We found that, in practice, Method 2 works faster than Method 1. By

way of illustration, we have adopted Method 2 to find the minimax sample

size for

k = 2,3,4,5;

Co = 0, cI  = 1 and d = 1; and

c = 1000.

The loss function L is given by ,

L(r;n) = kn + 1000 (log r)(1 f (1- G (x/r)) (x) dx)
2n 9 2n()d)

r 1 and n > 1. A sample two-way grid is given on the

following page for k = 4. From the computations performed using Method 2, F

the following information is obtained.

Table 2 Minimax sample sizes under Penalty function of Type 2

No. of populations Minimax sample size Minimax loss

k n

2 15 92.54

3 16 142.53

4 18 183.83

5 14 218.97

S. -.. . . . . . . . . . .
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Penalty function of Type 3 Penalties which take into account differences

between the best and the rest of the populations.

Suppose the statistical procedure R described above commits the 5,

mistake of type j (j = 1,2,--.,k-1). It is natural to insist that the penalty

for this wrong decision should depend on the magnitudes of e(j) and e(k).

Ofosu (1972), accordingly introduced the following penalty functions.

W (el, 2 ,.,ek) = aj log e(k)/e(j)
p.-

for all (ell 2 ,...,ek) in a and j = 1,2,...,k-1, where ai's are

positive constants measured in the same units as those of c and c1. The

loss function L then works out to be

k-i
L(el 2 ,...,ek;n) = C(n) + E a.(log '(k)/(j)) pj(ele 2 ,..., k ;n)

for all (else 2,..-,ek) in o and n > 1. Ofosu (1972) asserts that
2- k

max L(6';n) --max L(W;n)
Bee ece1

that
for every n > I and this equality can be verified numerically only! He has

A
no analytical proof of this equality. Then he went on to obtain the minimax

sample size for selecting the best of k Gamma populations. We also do not

have any analytical proof of this equality.We abandon the project of working

with penalty functions of this type.

Penalty function of Type 4: Penalties are imposed only when the ratio of

the parameter values of the best population and

the rest exceed a prescribed number.

.... a.. ,..

-.- , .. " .' .• , .. . -. , .. . ,,• .. . . .. . -



-22-

In this part, we are going to introduce 2-v new, natural and special F

penalty function. Let 0 < 6 < 1 be given. Let e1 , e2, .. be a

configuration of the parameters of the k populations I  2

respectively. Suppose the statistical procedure R declares ,ri. to be the 5.

best for some j = 1,2,...,k-1. The parameter values associated with the best

population it. and wi. are e(k) and e(j) respectively. If the ratiok (k.-- .

< 1) of e~ and e is close to unity, we would not like(j)(k ) (j) a (k)

to be penalized for taking the wrong decision of accepting i. to be the

best population. On the other hand, if the ratio e(j)/e(k) is small, we

certainly wish to be penalized for accepting ti. to be the best. A line has

to be drawn somewhere between the statements that the ratio e( )/ek being

close to unity and that it is being small. The number 6 distinguishes these

two statements and the choice of 6 is subjective. The discussion carried

out above can be embodied mathematically in the following way.

Sele2 , .,ek) = a. if e(j)/e(k) ,

= 0 if e(j)/e(k) ,

for all (el,e 2,...,ek) in o and j = 1,2,.--,k-1, where aj' s are F

positive numbers measured in the same units as those of co  and c .To

emphasize the gravity of the type of wrong decision taken, one may wish to

have a 1> a2 __- > ak I  This chain of inequalities indicates that

the more extreme the type of wrong decision the more severe the penalty is.

We deal with only the case a1 = 2 . ak-i = a, say. We were unable to

obtain concrete results in the general case of th, se constants. Under this case,
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the loss function L works out as follows.

Let (61,o2,...,ek) in 0 be given. Let r be the largest index,

if it exists, in {1,2,-,-,k-1) such that 6(r)/6(k) < a . This implies

that O(j)16(k) < 6 for j = 1,2,...,r and 6(j)/(k) > a for j = r+1,

r+2,...,k. Then

r
L(el,e 2 ,...,ek;n) = C(n) + a z pj(el ,2,...96k;n).

j=1 I

If there is no index r satisfying the above, then

L(el,e 2 ,...,ek;n) = C(n).

The index r, of course, depends on the configuration (ele 2 ,..Sek) in e.

We now proceed to obtain the minimax sample size n under the loss

function given above. Towards this goal, we consider the following subset of 0.

e2 {(e, 2 9-9) 6 ; 6 1 .2 a and e r 2 =
1 2 k 61 6 r r+1 'r+2

. 6k = (1/ ) r  for some

r in {1,2,,.-,k-1}1.

The following results help us to maximize the loss function L( ';n)

over all 6 e e for every fixed n > 1.

Lemma 3.8 Let (el,62,...,ok) e o . Suppose there exists a largest index
2'...' k

K r in {1,2,",k-1 such that 6(r)/6(k) < 6 Let

*{ = 6* .... = 6* and e* = '* ..... =6 = (6/*)e r ,
1 2 r r+1 r+2kr

, , .; w h e r e *r = O ) . T h e n E01 0 , . , k )  0 2 a n d -.."

9r

. . .



-24-

k~~~~~~. 2 kele21..;)I

for every n > 1

Proof. From the definition of e2 it is clear that e2

Observe that
Sk-i

p(oe* 6*..-e*n) G f I( ) 2 (x) dx

o j=1 (k)

- f (I G (6x)) k 1 )(x
2n r(-G 2n() - r 2n( x

Note that -I 6 for every i 1.i2,--.,r and .i)-< 1 for
e(k) 8 k

every i =r+1, r+2,..,, k. Consequently,

-k-i (l

p(else 29 ek;n) =f Ti (1 -G2 (j x)) g2n()dO j-1 6(k)

r e()k
I Ti n(1G ( x)) i (1-G (~L~)g(x) dx

O 1=1 2n e(k) ir1 2n(L )) 92n

G(6x))r -1GW k-l-

(1- (1 G 2 () 2n 2n 92n(x) dx
0

Pk- pke~ 2  ~k~

* This completes the proof.

* Lemma 3.9 The following equality is true for every n > 1

t~ax L(W;n) m ax L(W';n).*.

22
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Proof. Let p ax L( ;n) and q zax L(e;n). Since e 2 c e, q < p.

To prove the reverse inequality p < q, it suffices to prove the following.
i'. --. " -

* .. Given (el2 . - , k) in e , there exists (ej,e ,.--,e k) in 02 such that

L(e , 2 ,---,ek;n) < L(e * ,. -- , *;n) .

Let (O19e2,.--,ek) in 0 be given. Case (i). 0) 6 for all j .,1,2,.
e (k)

. k-1. Then L(ele ,.-.,ek;n) = C(n) + 0 = C(n) < L(o*,8*,-..,e8;n)
2t k 1 2 -k

for any (, in 02. Case (ii). There exists j in {l,2,-..,k-1

e~j
such that < a . Let r be the largest index in {i,2,-..,k-l} such

-(k)

that IN Let e* =* e* er an
e(k) < 6 Let er+ - er+2 --"'" an"'"

e* = (1/ )e(r). Obviously, (E,e ,..-,e() £ 02. Also,

r

L(el,e 2,...,ek;n) = C(n) + a z p-(9l,e2,.--,ek;n)j=l J 29-9 k

k-i
C(n) + a E pj(ele 2 1...,ek;n)j =1 .-.

- C(n) + a(l- pk(6l,e2, .,ek;n))

~L

< C(n) + a(l - Pk(el,e,..,e*;n)), by Lemma 3.8

k-1
= C(n) + a r (e e. n

j = 1 2 k

This completes the proof.

The above lemma simplifies the problem of maximizing L(.;n) over e

r

.2 . .~ -. '~ .. .'.~ -- . ~ ~ -... ~ - '*-~ * ~ ':: .
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to that of maximization of L(.;n) 'over 0 2. We now solve the problem of

maximization of L(-;n) over E2* We partition 02 as follows. Let

E) f 018 e CE e and02j 2Pe eZ...#ek) 02; 1  2 ekl J2

e (l/S)e I

for j 1,2,---,k-1.

*Lemma 3.10 The following statement is true. if (el.e2 ... ek)C 02j then

P(epe 2...e n) I Ur'~- G2(/6)) k-j (1G-~ ) J-1i 2 ()d

for i 1 ,29---,j and j 1 ,2,---,k-1.

Proof. The above assertion follows directly from the definition of the

probabilities p i's and 0 2js.

Theorem 3.11 For every fixed n > 1,

k-i
teax L(6;n) =C(n) + a(l -f(1 G (Sx)) g2 (x) dx)
Bee 0

-C(n) + a(k-l) f (1 - G x6)1- G2 (x)) g(x) dx.

Proof. The proof is carried out in the following two major steps.

10 In view of Lemma 3.9, we maximize L(e;n) over 0 2 As a first step,

we maximize LC.;n) over 0 for every i 1 ,2,---,k-1. We observe that
21

i %.

kmax L(O;n) =C(n) + jeax a ZE P(9;n)
Bee0 Bee2 j=l ..

- C(n) + is (1- Gn(x/6S)) ki(1- G Cx)) g2 (x) dx,
0

by L-ma 3.10.
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The maximum of L(O;n) over 02,k-1 has another equivalent expression. It is

*given by V1

kax L(O;n) - C(n) + a max k p-(o;n)OE O2,k-1 OC 2,k- _1
eeo ...- 'i ,o:n

- C(n) + a eax (;n))
e2o,k-1..j

*k-il

-C(n) + a(l - 1 C (l-t(6x)~ -- g(x) dx)
0

20. The following chain of inequalities can easily be checked to be true.

f (1i-On(X/6)) k-i g(X) dx < (i- Gn(x/))k-2 (I - G2n(X)) g2n(x) dx
0 0

-'(< .(1-G 2  xt))k3 (1 - 2n(x)) 2 g2 (x) dx < .......
2 " -n 2n 2n

0
2k-2

(1 - 2n (x/6)) (1 - G2 (X))k-2 g2n(X) dx.

Since i - 1,2,-..,k-1 is a partition of 02) we have

jeax L(W;n) - max {C(n) + ia f (1 -G (X/6))k-i (1- G (X))i-  (x)
""E0 2  i<i<k-l 0

- C(n) + a(k-i) f (1 - 2n (x/6))(l - G 2n(x))k 2n(W dx

k-i 0C(n) + a(l - (1- G2n(Ox)) g2n(x) dx) by Step 1 "

This completes the proof. I

r .
- . * *~~-. * -. *. -. *. * * * *. ...- . , ...
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The above theorem explicitly determines the maximum of L(;n over

all 8 in e. This maximum is the same as the maximum of L(e;n) over all e

in~2,k-l' the so called "Least Favourable Choice Set". In order to find the

minimax sample size, we have to solve the following problem.

Objective. For a given 0 < 6 < 1, minimize

C(n) + a(l - f (1 G2n(k6))k g2n(X) dx)
0 .

over all n > 1.

We obtain the minimax sample sizes for 6 - 0.5, 0.6, 0.7, 0.8,0.9;

km 2,3,4,5; a = 200; co -, c1  1 and d 1 by solving the above problem.

These sample sizes are tabulated below.

Table 4 Minimax sample sizes under Penalty function of Type 4

No. of 6 0.5 0.6 0.7 0.8
populations

Minimax Minimax Minimax Minimax Minimax Minimax Minimax Minimax
k sample loss sample loss sample loss sample loss

size size size size

2 10 32.95 12 45.80 12 62.84 8 82.07

3 11 53.14 12 73.34 11 98.20 6 120.55

4 11 71.68 11 97.23 8 124.99 3 143.26

5 10 88.89 10 118.10 6 144.74 2 157.26

- - 0.9
Minimax Minimax
sample loss
size

2 2 96.01

3 2 131.87

4 2 151.46

5 2 167.50
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4. Asymptotic minimax value of n F

In Section 3, we obtained minimax sample sizes under penalty

function of type 2 and the relevant loss function involved is

k-i
L(r;n) kn i+ 1000 (log r) (1 - f (1 - (x/r)) g2 (X) dx)

0

for r > 1 and n > 1. (4.1)

Using Mehtod 2, in order to find the minimax sample size for a given k,

we have tabulated the values of L(r;n) for r - 1.0, l.l,.--,r 2 k and

n - 1,2,-.-,20. Fortunately, the minimax sample size n was one of the

numbers 2,3,.--,20. It could happen that the minimax sample size n is

a number beyond 20. The constant 1000 appearing in the above loss function

played a crucial role in keeping minimax sample sizes to a moderate level.

If we replace 1000 by a larger number, minimax sample sizes do increase.

To illustrate this point, we worked out the minimax sample sizes under the

loss function

k-l
L(r;n) - kn + 1200 (log r) (1 (1 - G2n(x/r)) g2n(x) dx),

0
for r > 1 and n > 1, (4.2)

and these are tabulated below.

Table 5 Minimax sample sizes under the loss functions (4.1) and (4.2)

No. of populations Minimax sample size Minimax sample size 5%*"-"

under (4.1) under (4.2)

2 15 18

3 16 16

4 18 18

5 14 19
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If we increase the value of c2 , we may need to compute the value

of L(r;n) for n > 20. In this section, we approximate the integral involved

in L(r;n) by an integral involving the standard normal distribution for

large values of n. The integral in focus is k 1 1
(I G2n(x/r)) k- 2  (4.3)

0

The above integral can be obtained probabilistically as follows. Let Y1 . Y2 '

"'" Yk be k independent identically distributed random variables each havingik
chi-square distribution with 2n degrees of freedom. Then

Pk(r;n) Pr(Yk < rY., j = 1,2,...,k-1)

f(1-G k-i1x
( - G2n(x/r)) g2n(X)

Employing Wilson-Hilferty's transformation, we define L
(Yi/2n)I/3 - (I - I/9n)

(i/9n)i '

See Kendall and Stuart (1977, p.398-399). If n is large, each Zi  is normally1

distributed with mean zero and variance unity. We note that

1/3
Yk<rY. ifandonlyif Zk<r/z. + where "" n,r ,

•n r .(I - 1/9n)(r113 - 1)

(1/9n) "

Consequently,

Pk(r;n) = Pr(Yk < rY, j = 1,2,..,k-1) =

= Pr(Zk r1/3Z. + anr , i = 1,2,..-,k-)

=o o. .. . . . . .. o. .. .... °_ . . - °-.. . .... * . . ° • . ° .
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,I,

" (- x- an .
model..Th = frl/3(Yr))k-1 (2w)"  exp(- x2/2) dx,

where
where 0(-) is the distribution function of the standard normal probability

model. Thus for large n, the loss function works out to be

L(r;n) kn + c2(wlog,,)(l-.)ep( /2) dx)
-~ r

for r > l and n> 1.

The integral involved in the loss function under penalty function

of type 4 is given by wi

k-1-

f (1 - G (x)) g(x) dx.
2n 92n(x

As before, if n is large, this integral is approximately equal to

(1 - ( (x b ))k1 (2)-* exp(- x2/2) dx,

-~ n,s
(1 -1/9 )((18)1/3 - 1)
e1/bn) . The loss function, if n is large,where n,6 Ig) )'''i

under penalty function of type 4 is given by

L(r;n) = C(n) + a(i (1 - 0(61/3 (x - b )))k-1 (2,f) " exp(- x212) dx),
n,6 /)d)

r > 1 and n > 1.

Fr
i-"2

*** .;-..
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